| **银杏科技有限公司旗下技术文档发布平台** |||| |技术支持电话|**0379-69926675-801**||| |技术支持邮件|Gingko@vip.163.com||| ^ 版本 ^ 日期 ^ 作者 ^ 修改内容 ^ | V1.0 | 2019-12-25 | gingko | 初次建立 | ===== 实验十六:基于SPI总线的ARM+FPGA通信实验 ===== ==== 一、实验目的与意义 ==== - 了解SPI通信的基本原理。 - 掌握SPI通信基于FPGA的实现方法。 - 学习基于SPI总线的ARM+FPGA数据传输应用。 ==== 二、实验设备及平台 ==== - iCore3 双核心板( FPGA型号为EP4CE10F17,ARM型号为STM32F407IGT6)。[[https://item.taobao.com/item.htm?spm=a1z10.1-c.w4024-251734887.3.5923532fXD2RIN&id=524229438677&scene=taobao_shop|点击购买]] - Blaster(或相同功能的)仿真器和USB线缆。[[https://item.taobao.com/item.htm?spm=a1z10.5-c.w4002-251734908.13.20822b61MmPeNN&id=554869837940|点击购买]] - Micro USB线缆。 -QuartusII开发软件(本实验中使用的是13.1版本)。 ==== 三、实验原理 ==== * **SPI简介** * 串行外设接口(SPI)可与外部器件进行半双工/全双工的同步串行通信。通常SPI通过4个引脚与外部器件连接: * MISO:主输入/从输出数据。从模式下发送数据,主模式下接受数据。 * MOSI:主输出/从输入数据。从模式下接受数据,主模式下发送数据。 * SCLK:主器件的串行时钟输出和从器件的串行时钟输入 * CS:从器件选择。挂载多个从器件时,此信号是“片选”信号。 * 通过FPGA建立的SPI模块对外提供SCLK、CS、MOSI、MISO接口,与STM32的SPI相连接,Commix串口精灵与STM32通过串口连接,实现三者之间的通信。本实验中,Commix串口精灵向STM32发送数据,STM32的RXD端口接收数据,然后,通过SPI把数据发送至FPGA,STM32起到一个桥梁的作用。程序运行后,FPGA收到数据向STM32发送数据,经过STM32发送至Commix串口精灵显示出来,并辅以LED显示进行验证。 * 本实验中SPI通信双方只有ARM和FPGA,因此信号按照单个主器件/单个从器件的方式连接,既MOSI引脚连接在一起,MISO引脚连接在一起。通过这种方式,主器件和从器件之间以串行方式传输数据(最高有效位在前)。下图为信号连接图: {{ :icore3:icore3_fpga_16_1.png?direct&700 |图1 信号连接图}} ==== 四、代码讲解 ==== * SPI总线器件有主从之分,本实验中ARM作为主器件,FPGA作为从器件。所以在ARM和FPGA之间,SCLK信号和CS信号是由ARM发送给FPGA的。当ARM发送数据时,控制数据和SCLK同步输出,拉高CS信号。当ARM接收数据时,控制SCLK输出和CS电平为低,并接收数据。 * FPGA作为从器件,要实现两个工程,即数据的接收和数据的发送。下面分两部分介绍。 === 1.FPGA接收数据。 === * 由ARM提供的数据和SCLK是同步的,那么FPGA接收数据的触发信号可以选用SCLK。阅读过STM32F407手册能够发现,它的SPI总线发送数据时,是先发送高位,再发送低位的。因此,FPGA接收到的数据也是先接收到高位数据,再接收到低位数据。这里可以采用位移操作,将数据依次存入寄存器的相应位。代码实现如下所示。 always@(posedge spi_clk or negedge rst_n) if(!rst_n) data_in<=40'd0; else if(!spi_cs) data_in<=40'd0; else data_in<={data_in[38:0],spi_mosi_r};//将SPI输入数据存入data_in寄存器 * 为了验证SPI通信的正确性,可以通过点亮LED来具象化实验效果。iCore3板卡上FPGA连接有三色LED。那么,可以通过发送“ledr、ledg、ledb”指令,点亮LED相应色彩,进行程序正确性的验证。由于这些指令是ASCII码格式,而SPI传输的是二进制模式,所以FPGA进行接收指令判断时,对比的为指令的二进制值。为了判断数据是否接收完毕,代码中做了“回车”指令检测,既检测到“回车”指令的ASCII码之后,判断为数据接收完毕,然后将接收数据“回车”指令之前的数据和LED点亮指令做对比,从而控制三色LED的显示。代码实现如下: always@(posedge spi_clk or negedge rst_n) if(!rst_n) data<=32'd0; else if(data_in[7:0] == 8'd13)//“回车”键对应的ASCII码的值为8‘d13 data<=data_in>>8;//取回车键之前的值 else data<=data; //对比接收数据// reg [2:0]led; always@(posedge CLK_25M or negedge rst_n) if(!rst_n) led <= 3'b111; else if (data == ledr) led <= 3'b011; //红灯亮 else if (data == ledg) led <= 3'b101; //绿灯亮 else if (data == ledb) led <= 3'b110; //蓝灯亮 === 2.FPGA发送数据。 === * FPGA发送数据的时候,ARM是接收方,但是发送时钟还是由ARM提供,即CS信号为低时,FPGA按照SCLK的时序发送数据,实验中,FPGA发送至ARM的内容是字符串“hello”对应ASCII码的二进制数。按照SPI总线定义,先发送高位,再发送低位。代码如下: always@(negedge spi_clk or negedge rst_n) if(!rst_n) begin spi_miso<=1; data_out<=hello; end else if(!spi_cs ) begin spi_miso <= data_out[39]; //将最高位通过SPI总线发送出去 data_out<=data_out<<1; end else begin spi_miso<=1'b1; data_out<=hello; end ==== 五、操作流程和测试结果 ==== === 1.操作步骤 === * 把仿真器与iCore3的SWD调试口连接(直接相连或者通过转换器相连); * 将USB-Blaster与iCore3的JTAG调试口相连; * 将跳线帽插在USB UART; * 把iCore3(USB_UART)通过Micro USB线与计算机连接,为iCore3供电; * 打开Commix串口精灵,找到对应的端口打开; * 打开Quartus II开发环境,并打开实验工程; * 烧写FPGA程序到iCore3上; * 打开Keil MDK开发环境,并打开实验工程; * 烧写ARM程序到iCore3上; * 输入串口命令,观察实验现象。 === 2.实验结果 === |串口发送命令格式 ARM_LED现象| FPGA_LED现象| |LEDR\CR\LF| 红灯亮| 红灯亮| |LEDG\CR\LF| 绿灯亮| 绿灯亮| |LEDB\CR\LF| 蓝灯亮| 蓝灯亮| * 在Commix上发送命令后,对应的ARM和FPGA的LED灯亮,同时接收显示:“hello”表示实验成功,如下面两图所示: {{ :icore3:icore3_fpga_16_2.png?direct |图2 串口指令发送}} {{ :icore3:icore3_fpga_16_3.png?direct |图3 实验效果展示}}