|**银杏科技有限公司旗下技术文档发布平台** ||||
|技术支持电话|**0379-69926675-801** |||
|技术支持邮件|Gingko@vip.163.com |||
|技术论坛|http://www.eeschool.org |||
^ 版本 ^ 日期 ^ 作者 ^ 修改内容 ^
| V0.1 |2020-11-11 | gingko | 初次建立 |
===== STM32CubeMX教程二——GPIO输出实验 =====
1.在主界面选择File-->New Project或者直接点击ACCEE TO MCU SELECTOR新建项目
{{ :icore3l:icore3l_cube_2_1.png?direct |}}
2.出现芯片型号选择,搜索自己芯片的型号,双击型号,或者点击Start Project进入配置在搜索栏的下面,提供的各种查找方式,可以选择芯片内核、型号等等,可以帮助你查找芯片。本实验选取的芯片型号为:STM32F429IGHx。
{{ :icore3l:icore3l_cube_2_2.png?direct |}}
3.配置RCC,使用外部时钟源
{{ :icore3l:icore3l_cube_2_3.png?direct |}}
4.配置调试引脚
{{ :icore3l:icore3l_cube_2_4.png?direct |}}
5.将三色LED对应的三个引脚(PI3、PI4、PH14)设置为GPIO_Output
{{ :icore3l:icore3l_cube_2_5.png?direct |}}
6.引脚模式配置
{{ :icore3l:icore3l_cube_2_6.png?direct |}}
7.时钟源设置,选择外部高速时钟源,配置为最大主频
{{ :icore3l:icore3l_cube_2_7.png?direct |}}
8.工程文件的设置, 这里就是工程的各种配置。我们只用到有限的几个,其他的默认即可。IDE我们使用的是 MDK V5
{{ :icore3l:icore3l_cube_2_8.png?direct |}}
9.点击Code Generator,进行进一步配置
{{ :icore3l:icore3l_cube_2_9.png?direct |}}
* **Copy all used libraries into the project folder** 【将HAL库的所有.C和.H都复制到所建工程中】
* 优点:这样如果后续需要新增其他外设又可能不再用STM32CubeMX的时候便会很方便
* 缺点:体积大,编译时间很长
* **Copy only the necessary library files** 【只复制所需要的.C和.H(推荐)】
* 优点:体积相对小,编译时间短,并且工程可复制拷贝
* 缺点:新增外设时需要重新用STM32CubeMX导入
* **Add necessary library files as reference in the toolchain project configuration file**【不复制文件,直接从软件包存放位置导入.C和.H】
* 优点:体积小,比较节约硬盘空间
* 缺点:复制到其他电脑上或者软件包位置改变,就需要修改相对应的路径
自行选择方式即可
10.然后点击GENERATE CODE,创建工程
{{ :icore3l:icore3l_cube_2_10.png?direct |}}
创建成功,打开工程。
\\
\\
\\
\\
===== 实验二:GPIO输出实验——ARM驱动三色LED=====
==== 一、实验目的与意义 ====
- 了解STM32 GPIO结构
- 了解STM32 GPIO 特征
- 了解LED特征和应用领域
- 掌握STM32 HAL库中GPIO属性的配置方法
- 掌握KEIL MDK集成开发环境使用方法
==== 二、实验设备及平台 ====
- iCore3L双核心板
- JLINK(或相同功能)仿真器
- Micro USB线缆
- Keil MDK开发平台
- STM32CubeMX开发平台
- 装有WIN XP(及更高版本)系统的计算机
==== 三、实验原理 ====
=== STM32 GPIO简介 ===
* GPIO 是通用输入输出端口的简称,简单来说就是 STM32 可控制的引脚, STM32 芯片的 GPIO 引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。STM32F429 芯片的 GPIO 被分成十一组,分别为PA、PB、PC、PD、……、PK,PA到PJ前十组每组有 16 个引脚,引脚标号分别为0到15,第十一组PK有8个引脚,引脚标号分别为0到7。GPIO 最简单的功能是输出高低电平, GPIO 还可以被设置为输入功能,用于读取按键等输入信号。STM32F4 每组通用 I/O 端口包括 4 个 32 位配置寄存器( MODER、 OTYPER、 OSPEEDR和 PUPDR)、 2 个 32 位数据寄存器( IDR 和 ODR)、 1 个 32 位置位/复位寄存器 (BSRR)、1 个 32 位锁定寄存器 (LCKR) 和 2 个 32 位复用功能选择寄存器( AFRH 和 AFRL)等。
GPIO可以配置成以下8种工作模式:
* **浮空输入:**此端口在默认情况下什么都不接,呈高阻态,这种设置在数据传输时用的比较多。
* **上拉输入:**上拉输入模式与浮空输入模式相比,仅仅是在数据通道上部,接入了一个上拉电阻,这个上拉电阻的阻值介于30K~50K欧姆,CPU可以随时在输入数据寄存器的另一端,读出I/O端口的电平状态。这种模式的好处在于我们什么都不输入时,由于内部上拉电阻的原因,处理器会觉得我们输入了高电平,这就避免了不确定的输入。该端口在默认情况下输入为高电平。
* **下拉输入:**下拉输入模式与浮空输入模式相比,仅仅是在数据通道上部,接入了一个下拉电阻。与上拉输入模式类似,这种模式的好处在于外部没有输入时,由于内部下拉电阻的原因,我们的处理器会觉得我们输入了低电平。
* **模拟功能:**STM32的模拟输入通道的配置很简单,信号从I/O端口直接进入ADC模块。此时,所有的上拉、下拉电阻和施密特触发器,均处于断开状态,因此输入数据寄存器将不能反映端口上的电平状态,也就是说,模拟输入配置下,信号不经过输入数据寄存器,CPU不能在输入数据寄存器上读到有效的数据。该输入模式,使我们可以获得外部的模拟信号。
* **开漏输出:**开漏输出不可以直接输出高电平,开漏输出的输出端相当于三极管的集电极,要得到高电平状态需要上拉电阻才行。
* **推挽输出:**推挽输出可以输出高、低电平,连接数字器件;推挽结构一般是指两个三极管分别受两个互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源决定。
* **开漏复用输出:**GPIO的基本功能是普通的I/O,而STM32有自己的各个功能模块,这些内置外设的外部引脚是与标准GPIO复用的,当作为这些模块的功能引脚时就叫复用。开漏复用输出功能模式与开漏输出模式相比,不同的是输出控制电路的输入,是和片上外设的输出信号相连即与复用功能的输出端相连,此时,输出数据寄存器在输出通道被断开。
* 推挽复用输出:推挽复用输出功能模式与推挽输出模式相比,不同的是输出控制电路的输入,是和片上外设的输出信号相连,即与复用功能的输出端相连,而输出数据寄存器在输出通道被断开。
本实验通过STM32的GPIO口驱动LED,设定GPIO为推挽输出模式。输出低电平LED亮,输出高电平LED灭。驱动原理图如下图所示。
{{ :icore3l:icore3l_arm_hal_2_1.png?direct |}}
==== 四、实验程序 ====
- 主函数
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
while (1)
{
//三色LED循环闪烁
LED_RED_ON;
LED_BLUE_OFF;
LED_GREEN_OFF;
HAL_Delay(500); //延时500ms
LED_RED_OFF;
LED_BLUE_ON;
LED_GREEN_OFF;
HAL_Delay(500);
LED_RED_OFF;
LED_BLUE_OFF;
LED_GREEN_ON;
HAL_Delay(500);
}
}
- GPIO初始化
void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOI_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();//GPIOA、GPIOI和GPIOH端口时钟使能
HAL_GPIO_WritePin(GPIOI, LED_GREEN_Pin|LED_RED_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED_BLUE_GPIO_Port, LED_BLUE_Pin, GPIO_PIN_SET);//PH14接蓝色LED灯,PH14置高电平,蓝灯熄灭
GPIO_InitStruct.Pin = LED_GREEN_Pin|LED_RED_Pin;//设置连接红绿LED灯的IO端口
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//输出类型为推挽输出
GPIO_InitStruct.Pull = GPIO_PULLUP;//上拉输出
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;//设置I/O输出速率
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LED_BLUE_Pin;//设置连接蓝色LED灯的IO端口
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//输出类型为推挽输出
GPIO_InitStruct.Pull = GPIO_PULLUP;//上拉输出
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;//设置I/O输出速率
HAL_GPIO_Init(LED_BLUE_GPIO_Port, &GPIO_InitStruct);
}
* void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)这个函数有两个参数,第一个参数是用来指定需要初始化的GPIO对应的GPIO组,取值范围为GPIOA~GPIOK。第二个参数为初始化参数结构体指针,结构体类型为GPIO_InitTypeDef。
typedef struct
{
uint32_t Pin; // 配置IO端口
uint32_t Mode; // 配置IO模式
uint32_t Pull; // 配置IO上下拉
uint32_t Speed; // 配置IO速度等级
uint32_t Alternate; // 要连接到所选引脚的外围设备
}GPIO_InitTypeDef;
==== 五、实验步骤 ====
- 把仿真器与iCore3L的SWD调试口相连(直接相连或者通过转接器相连);
- 把iCore3L通过Micro USB线与计算机相连,为iCore3L供电;
- 打开Keil MDK开发环境,并打开本实验工程;
- 烧写程序到iCore3L上;
- 也可以进入Debug 模式,单步运行或设置断电运行观察LED状态。
==== 六、实验现象 ====
iCore3L 双核心板上与ARM相连的三色LED(PCB上标示为ARM▪LED),按照红色、绿色、蓝色的次序交替点亮。