| **银杏科技有限公司旗下技术文档发布平台** |||| |技术支持电话|**0379-69926675-801**||| |技术支持邮件|Gingko@vip.163.com||| ^ 版本 ^ 日期 ^ 作者 ^ 修改内容 ^ | V1.0 | 2020-07-09 | gingko | 初次建立 | ===== 实验二十四:LWIP_DHCP实验——动态分配IP地址 ===== ==== 一、 实验目的与意义 ==== - - 了解STM32 SPI和DHCP结构。 - 了解STM32 SPI和DHCP特征。 - 掌握SPI和DHCP的使用方法。 - 掌握KEIL MDK 集成开发环境使用方法。 ==== 二、 实验设备及平台 ==== - iCore4 双核心板[[https://item.taobao.com/item.htm?spm=a1z10.1-c-s.w4004-22598974120.15.5923532fsFrHiE&id=551864196684|点击购买]]。 - JLINK(或相同功能)仿真器[[https://item.taobao.com/item.htm?id=554869837940|点击购买]]。 - Micro USB线缆。 - 网线。 - Keil MDK 开发平台。 - 装有WIN XP(及更高版本)系统的计算机。 ==== 三、 实验原理 ==== === 1、DHCP简介 === * DHCP(动态主机配置协议)是一个局域网的网络协议。指的是由服务器控制一段lP地址范围,客户机登录服务器时就可以自动获得服务器分配的lP地址和子网掩码。默认情况下,DHCP作为Windows Server的一个服务组件不会被系统自动安装,还需要管理员手动安装并进行必要的配置。 * DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)通常被应用在大型的局域网络环境中,主要作用是集中的管理、分配IP地址,使网络环境中的主机动态的获得IP地址、Gateway地址、DNS服务器地址等信息,并能够提升地址的使用率。 * DHCP协议采用客户端/服务器模型,主机地址的动态分配任务由网络主机驱动。当DHCP服务器接收到来自网络主机申请地址的信息时,才会向网络主机发送相关的地址配置等信息,以实现网络主机地址信息的动态配置。DHCP具有以下功能: * (1)保证任何IP地址在同一时刻只能由一台DHCP客户机所使用。 * (2)DHCP应当可以给用户分配永久固定的IP地址。 * (3)DHCP应当可以同用其他方法获得IP地址的主机共存(如手工配置IP地址的主机)。 * (4)DHCP服务器应当向现有的BOOTP客户端提供服务。 * DHCP有三种机制分配IP地址: * (1)自动分配方式(Automatic Allocation),DHCP服务器为主机指定一个永久性的IP地址,一旦DHCP客户端第一次成功从DHCP服务器端租用到IP地址后,就可以永久性的使用该地址。 * (2)动态分配方式(Dynamic Allocation),DHCP服务器给主机指定一个具有时间限制的IP地址,时间到期或主机明确表示放弃该地址时,该地址可以被其他主机使用。 * (3)手工分配方式(Manual Allocation),客户端的IP地址是由网络管理员指定的,DHCP服务器只是将指定的IP地址告诉客户端主机。 * 三种地址分配方式中,只有动态分配可以重复使用客户端不再需要的地址。 * DHCP消息的格式是基于BOOTP(Bootstrap Protocol)消息格式的,这就要求设备具有BOOTP中继代理的功能,并能够与BOOTP客户端和DHCP服务器实现交互。BOOTP中继代理的功能,使得没有必要在每个物理网络都部署一个DHCP服务器。RFC 951和RFC 1542对BOOTP协议进行了详细描述。 === 2、LWIP简介 === * LwIP是Light Weight (轻型)IP协议,有无操作系统的支持都可以运行。LwIP实现的重点是在保持TCP协议主要功能的基础上减少对RAM 的占用,它只需十几KB的RAM和40K左右的ROM就可以运行,这使LwIP协议栈适合在低端的嵌入式系统中使用。 * LwIP协议栈主要关注的是怎么样减少内存的使用和代码的大小,这样就可以让LwIP适用于资源有限的小型平台例如嵌入式系统。为了简化处理过程和内存要求,LwIP对API进行了裁减,可以不需要复制一些数据。 * LwIP提供三种API:1)RAW API 2)LwIP API 3)BSD API。 * RAW API把协议栈和应用程序放到一个进程里边,该接口基于函数回调技术,使用该接口的应用程序可以不用进行连续操作。不过,这会使应用程序编写难度加大且代 码不易被理解。为了接收数据,应用程序会向协议栈注册一个回调函数。该回调函数与特定的连接相关联,当该关联的连接到达一个信息包,该回调函数就会被协议 栈调用。这既有优点也有缺点。优点是既然应用程序和TCP/IP协议栈驻留在同一个进程中,那么发送和接收数据就不再产生进程切换。主要缺点是应用程序不 能使自己陷入长期的连续运算中,这样会导致通讯性能下降,原因是TCP/IP处理与连续运算是不能并行发生的。这个缺点可以通过把应用程序分为两部分来克 服,一部分处理通讯,一部分处理运算。 * LwIP API把接收与处理放在一个线程里面。这样只要处理流程稍微被延迟,接收就会被阻塞,直接造成频繁丢包、响应不及时等严重问题。因此,接收与协议处理必须 分开。LwIP的作者显然已经考虑到了这一点,他为我们提供了 tcpip_input() 函数来处理这个问题, 虽然他并没有在 rawapi 一文中说明。讲到这里,读者应该知道tcpip_input()函数投递的消息从哪里来的答案了吧,没错,它们来自于由底层网络驱动组成的接收线程。我们在编写网络驱动时, 其接收部分以任务的形式创建。 数据包到达后, 去掉以太网包头得到IP包, 然后直接调用tcpip_input()函数将其 投递到mbox邮箱。投递结束,接收任务继续下一个数据包的接收,而被投递得IP包将由TCPIP线程继续处理。这样,即使某个IP包的处理时间过长也不 会造成频繁丢包现象的发生。这就是LwIP API。 * BSD API提供了基于open-read-write-close模型的UNIX标准API,它的最大特点是使应用程序移植到其它系统时比较容易,但用在嵌入式系统中效率比较低,占用资源多。这对于我们的嵌入式应用有时是不能容忍的。 * 其主要特性如下: * (1) 支持多网络接口下的IP转发; * (2) 支持ICMP协议; * (3) 包括实验性扩展的UDP(用户数据报协议); * (4) 包括阻塞控制、RTT 估算、快速恢复和快速转发的TCP(传输控制协议); * (5) 提供专门的内部回调接口(Raw API),用于提高应用程序性能; * (6) 可选择的Berkeley接口API (在多线程情况下使用) ; * (7) 在最新的版本中支持ppp; * (8) 新版本中增加了的IP fragment的支持; * (9) 支持DHCP协议,动态分配ip地址。 ==== 3、LAN8720A简介 ==== * LAN8720A功能框图如图所示: {{ :icore4:icore4_arm_hal_24_1.png?direct |}} * LAN8720A是低功耗的10/100M以太网PHY层芯片,I/O引脚电压符合IEEE802.3-2005标准,支持通过RMII接口与以太网MAC层通信,内置10-BASE-T/100BASE-TX全双工传输模块,支持10Mbps和100Mbps。 * LAN8720A可以通过自协商的方式与目的主机最佳的连接方式(速度和双工模式),支持HPAuto-MDIX自动翻转功能,无需更换网线即可将连接更改为直连或交叉连接。LAN8720A的主要特点如下: * 高性能的10/100M以太网传输模块 * 支持RMII接口以减少引脚数 * 支持全双工和半双工模式 * 两个状态LED输出 * 可以使用25M晶振以降低成本 * 支持自协商模式 * 支持HPAuto-MDIX自动翻转功能 * 支持SMI串行管理接口 * 支持MAC接口 === 4、原理图 === * iCore4带有lan8720a嵌入式以太网控制器,本实验实现DHCP功能。当DHCP服务器接收到来自主机申请地址的信息时,DHCP服务器给主机指定一个具有时间限制的IP地址,时间到期或主机明确表示放弃该地址时,该地址可以被其他主机使用。实验原理图如下: {{ :icore4:icore4_arm_hal_24_2.png?direct |}} ==== 四、 实验程序 ==== === 1、主函数 === int main(void) { system_clock.initialize(); //系统时钟初始化 led.initialize(); //LED初始化 adc.initialize(); //ADC初始化 delay.initialize(216); //延时初始化 my_malloc.initialize(SRAMIN); //动态内存初始化 usart6.initialize(115200); //串口波特设置 usart6.printf("\033[1;32;40m"); //设置字体终端为绿色 usart6.printf("\r\nHello, I am iCore4!\r\n\r\n"); //串口信息输出 OSInit(); //UCOS初始化 while(lwip.initialize()) //lwip初始化 { LED_RED_ON; usart6.printf("\r\nETH initialize error!\r\n\r\n");//ETH初始化失败 } tcp.initialize(); OSTaskCreate(start_task,(void*)0,(OS_STK*)&START_TASK_STK[START_STK_SIZE-1],START_TASK_PRIO); OSStart(); //开启UCOS } === 2、动态内存初始化 === void my_mem_init(u8 memx) { mymemset(mallco_dev.memmap[memx],0,memtblsize[memx]*4); //内存状态表数据清零 mallco_dev.memrdy[memx]=1; //内存管理初始化OK } === 3、LWIP初始化 === u8 lwip_comm_init(void) { OS_CPU_SR cpu_sr; struct netif *Netif_Init_Flag; //调用netif_add()函数时的返回值,用于判断网络初始化是否成功 struct ip_addr ipaddr; //ip地址 struct ip_addr netmask; //子网掩码 struct ip_addr gw; //默认网关 if(lan8720.memory_malloc())return 1; //内存申请失败 if(lwip_comm_mem_malloc())return 1; //内存申请失败 if(lan8720.initialize())return 2; //初始化LAN8720失败 tcpip_init(NULL,NULL); //初始化tcp ip内核,该函数里面会创建tcpip_thread内核任务 lwip_comm_default_ip_set(&lwipdev); //设置默认IP等信息 #if LWIP_DHCP //使用动态IP ipaddr.addr = 0; netmask.addr = 0; gw.addr = 0; #else //使用静态IP IP4_ADDR(&ipaddr,lwipdev.ip[0],lwipdev.ip[1],lwipdev.ip[2],lwipdev.ip[3]); IP4_ADDR(&netmask,lwipdev.netmask[0],lwipdev.netmask[1] ,lwipdev.netmask[2],lwipdev.netmask[3]); IP4_ADDR(&gw,lwipdev.gateway[0],lwipdev.gateway[1],lwipdev.gateway[2],lwipdev.gateway[3]); usart6.printf("网卡en的MAC地址为:................%d.%d.%d.%d.%d.%d\r\n",lwipdev.mac[0],lwipdev.mac[1],lwipdev.mac[2],lwipdev.mac[3],lwipdev.mac[4],lwipdev.mac[5]); usart6.printf("静态IP地址........................%d.%d.%d.%d\r\n",lwipdev.ip[0],lwipdev.ip[1],lwipdev.ip[2],lwipdev.ip[3]); usart6.printf("子网掩码..........................%d.%d.%d.%d\r\n",lwipdev.netmask[0],lwipdev.netmask[1],lwipdev.netmask[2],lwipdev.netmask[3]); usart6.printf("默认网关..........................%d.%d.%d.%d\r\n",lwipdev.gateway[0],lwipdev.gateway[1],lwipdev.gateway[2],lwipdev.gateway[3]); #endif Netif_Init_Flag=netif_add(&lwip_netif,&ipaddr,&netmask,&gw,NULL,ðernetif_init,&tcpip_input);//向网卡列表中添加一个网口 #if LWIP_DNS dns_init(); #endif if(Netif_Init_Flag==NULL)return 3;//网卡添加失败 else//网口添加成功后,设置netif为默认值,并且打开netif网口 { netif_set_default(&lwip_netif); //设置netif为默认网口 netif_set_up(&lwip_netif); //打开netif网口 } return 0;//操作OK. } === 4、TCP初始化 === static INT8U tcp_server_init(void)//创建TCP服务器线程 { INT8U res; OS_CPU_SR cpu_sr; OS_ENTER_CRITICAL(); //关中断 res = OSTaskCreate(tcp_server_thread,(void*)0,(OS_STK*)&TCPSERVER_TASK_STK[TCPSERVER_STK_SIZE-1],TCPSERVER_PRIO); //创建TCP服务器线程 OS_EXIT_CRITICAL(); //开中断 return res;//返回值:0 TCP服务器创建成功 } === 5、TCP服务器任务 === static void tcp_server_thread(void *arg)//tcp服务器任务 { struct netconn *conn, *newconn; err_t err,recv_err; unsigned char remot_addr[4]; ip_addr_t ipaddr; unsigned short port; struct netbuf *recvbuf; LWIP_UNUSED_ARG(arg); conn = netconn_new(NETCONN_TCP); //创建一个TCP链接 netconn_bind(conn,IP_ADDR_ANY,TCP_SERVER_PORT); //绑定端口 8088号端口 netconn_listen(conn); //进入监听模式 while(1){ err = netconn_accept(conn,&newconn); //接收连接请求 if (err == ERR_OK) //处理新连接的数据 { newconn->recv_timeout = 10; netconn_getaddr(newconn,&ipaddr,&port,0); //获取远端IP地址和端口号 remot_addr[3] = (uint8_t)(ipaddr.addr >> 24); remot_addr[2] = (uint8_t)(ipaddr.addr >> 16); remot_addr[1] = (uint8_t)(ipaddr.addr >> 8); remot_addr[0] = (uint8_t)(ipaddr.addr); usart6.printf("pc ip : %d.%d.%d.%dserver,lacol port:%d\r\n",remot_addr[0], remot_addr[1],remot_addr[2],remot_addr[3],port); while(1) { recv_err = netconn_recv(newconn,&recvbuf); if((recv_err == ERR_OK)||(recvbuf != NULL)) //接收到数据 { recv_err = netconn_write(newconn ,recvbuf->p->payload,recvbuf->p->len,NETCONN_NOCOPY); //将接受到的数据原封不动的再发出去 netbuf_delete(recvbuf); }else if(recv_err == ERR_CLSD){ //关闭连接 netconn_close(newconn); netconn_delete(newconn); usart6.printf("lacol ip :%d.%d.%d.%d close connect\r\n",remot_addr[0], remot_addr[1],remot_addr[2],remot_addr[3]); break; }else if(recv_err == ERR_MEM) //内存错误,请稍后再试 { OSTimeDlyHMSM(0,0,0,5); //延时5ms }else OSTimeDlyHMSM(0,0,0,5); //延时5ms } }else OSTimeDlyHMSM(0,0,0,5); //延时5ms } } ==== 五、 实验步骤 ==== - 把仿真器与iCore4的SWD调试口相连(直接相连或者通过转接器相连); - 将跳线冒插在USB UART; - 把iCore4(USB UART)通过Micro USB线与计算机相连,为iCore4供电; - 把iCore4网口通过网线与计算机网口相连; - 打开PuTTY; - 打开Keil MDK 开发环境,并打开本实验工程; - 烧写程序到iCore4上; - 也可以进入Debug模式,单步运行或设置断点验证程序逻辑。 ==== 六、 实验现象 ==== * 实通过串口终端显示出信息。 {{ :icore4:icore4_arm_hal_24_3.png?direct |}}