目录

银杏科技有限公司旗下技术文档发布平台
技术支持电话0379-69926675-801
技术支持邮件Gingko@vip.163.com
版本 日期 作者 修改内容
V1.0 2020-07-29 gingko 初次建立







STM32CubeMX教程五十八——MDK FLM实验

1.在主界面选择File–>New Project 或者直接点击ACCEE TO MCU SELECTOR 2.出现芯片型号选择,搜索自己芯片的型号,双击型号,或者点击Start Project进入配置 在搜索栏的下面,提供的各 种查找方式,可以选择芯片内核,型号,等等,可以帮助你查找芯片。本实验选取的芯片型号为:STM32H750IBKx。 3.配置RCC,使用外部时钟源 4.时基源选择SysTick 5.将PA10,PB7,PB8设置为GPIO_Output 6.引脚模式配置 7.配置串口 在NVIC Settings一栏使能接收中断 引脚配置 8.配置ADC 9.配置QUADSPI 10.配置SDMMC 11.配置FATFS 12.配置SPI 13.配置FMC 14.时钟源设置,选择外部高速时钟源,配置为最大主频 15.工程文件的设置, 这里就是工程的各种配置 我们只用到有限几个,其他的默认即可 IDE我们使用的是 MDK V5.27 16.点击Code Generator,进行进一步配置

17.然后点击GENERATE CODE 创建工程 创建成功,打开工程。



实验五十八:MDK FLM实验——直接下载QSPI Flash

一、 实验目的与意义

  1. 了解STM32的QSPI结构。
  2. 了解STM32的QSPI特征。
  3. 掌握STM32的QSPI的使用方法。
  4. 掌握MDK FLM的使用方法。
  5. 掌握KEIL MDK 集成开发环境使用方法。

二、 实验设备及平台

  1. iCore4TX 双核心板点击购买
  2. JLINK(或相同功能)仿真器。点击购买
  3. Micro USB线缆。
  4. Keil MDK 开发平台。
  5. STM32CubeMX开发平台。
  6. 装有WIN XP(及更高版本)系统的计算机。

三、 实验原理

引导模型 存储器
XiP QSPI Flash memory
NOR Flash memory(on FMC)
BootROM SPI-NOR(emulated with QSPI 1 line)
SDCARD
Volatile memory Internal SRAM
External SRAM
External SDRAM
External PSRAM

四、 实验程序

1.主函数

int main(void)
{
  int flash_id;
  CPU_CACHE_Enable();
  HAL_Init();
  i2c.initialize();
  axp152.initialize();
  axp152.set_dcdc1(3500);//[ARM & FPGA]
  axp152.set_dcdc2(1200);//[FPGA INT]
  axp152.set_dcdc3(3300);//[DCOUT3]
  axp152.set_dcdc4(3300);//[DCOUT4]
 
  axp152.set_aldo1(3300);//[BK3]
  axp152.set_aldo2(3300);//[ALDOOUT2]
  axp152.set_dldo1(3300);//[BK0]
  axp152.set_dldo2(3300);//[BK1]
  HAL_Delay(200);
 
  SystemClock_Config();
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_FMC_Init();
  MX_USART2_UART_Init();
  MX_QUADSPI_Init();
  MX_ADC1_Init();
  MX_ADC3_Init();
  MX_SDMMC1_SD_Init();
  MX_FATFS_Init();
  MX_SPI4_Init();
  BSP_QSPI_Init();
  usart2.initialize(115200);
  usart2.printf("iCore4TX Bootloader(W25Q64) V%s\r\n",VER);
 
  /* 初始化 w25q64 */
  W25QXX_ExitQPIMode();
  W25QXX_Reset();
  flash_id = BSP_QSPI_FLASH_ReadID();
  W25QXX_EnterQPIMode();  
 
  if(flash_id == 0xEF4017){
    usart2.printf("FLASH(W25Q64) init success!\r\n");
    usart2.printf("Jump to Flash!\r\n");
  }else{
    usart2.printf("FLASH(W25Q64) init fail!\r\n");
    while(1){
      HAL_Delay(50);
      LED_ON;
      HAL_Delay(50);
      LED_OFF;
    }
  }
  LED_ON;
  QSPI_EnableMemoryMappedMode(&hqspi);
  CPU_CACHE_Disable();
  SysTick->CTRL = 0;
 
  /* 初始化用户应用程序的堆栈指针并跳转到用户应用程序*/
  JumpToApplication = (pFunction) (*(__IO uint32_t*) (APPLICATION_ADDRESS + 4));
  __set_MSP(*(__IO uint32_t*) APPLICATION_ADDRESS);
  JumpToApplication();
  while (1)
  {
  }
}

2.QSPI FLASH退出QPI模式

void W25QXX_ExitQPIMode(void)
{   
    QSPI_CommandTypeDef cmd;
 
    cmd.InstructionMode = QSPI_INSTRUCTION_4_LINES;
    cmd.Instruction = W25X_ExitQPIMode;
 
    cmd.AddressMode = QSPI_ADDRESS_NONE;
    cmd.AddressSize = QSPI_ADDRESS_24_BITS;
    cmd.Address = 0x00; 
 
    cmd.DataMode = QSPI_DATA_NONE;
    cmd.NbData = 0;
 
    cmd.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
    cmd.AlternateBytesSize = 0;
    cmd.AlternateBytes = 0x00;
 
    cmd.DummyCycles = 0;
 
    cmd.DdrMode = QSPI_DDR_MODE_DISABLE;
    cmd.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
    cmd.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
 
    HAL_QSPI_Command(&hqspi, &cmd, 100);
 
    w25qxx_mode = W25QXX_MODE_SPI;
}
 

3.QSPI FLASH进入QPI模式

void W25QXX_EnterQPIMode(void)
{
    uint8_t dat;
 
    QSPI_CommandTypeDef cmd;
 
    dat = W25QXX_ReadSR(2); //先读出状态寄存器2的原始值
    if ((dat & QE_MASK) == 0x00) //QE位未使能
    {
        W25QXX_WriteEnable(1); //写使能
        dat |= QE_MASK; //使能QE位
        W25QXX_WriteSR(2, dat); //写状态寄存器2
    }
 
    cmd.InstructionMode = QSPI_INSTRUCTION_1_LINE;
    cmd.Instruction = W25X_EnterQPIMode;
 
    cmd.AddressMode = QSPI_ADDRESS_NONE;
    cmd.AddressSize = QSPI_ADDRESS_24_BITS;
    cmd.Address = 0x00; 
 
    cmd.DataMode = QSPI_DATA_NONE;
    cmd.NbData = 0;
 
    cmd.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
    cmd.AlternateBytesSize = 0;
    cmd.AlternateBytes = 0x00;
 
    cmd.DummyCycles = 0;
 
    cmd.DdrMode = QSPI_DDR_MODE_DISABLE;
    cmd.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
    cmd.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
 
    HAL_QSPI_Command(&hqspi, &cmd, 100);
 
    w25qxx_mode = W25QXX_MODE_QPI;
 
    cmd.InstructionMode = QSPI_INSTRUCTION_4_LINES;
    cmd.Instruction = W25X_SetReadParameters;
    cmd.DataMode = QSPI_DATA_4_LINES;
    cmd.NbData = 1;
    dat = 0x03 << 4; //设置P4&P5=11,8个dummy clocks,104MHz
    W25QXX_WriteEnable(1);
    if (HAL_QSPI_Command(&hqspi, &cmd, 100) == HAL_OK)
    {
        HAL_QSPI_Transmit(&hqspi, &dat, 100);
    }
}

4.QSPI FLASH复位

void W25QXX_Reset(void)
{
    QSPI_CommandTypeDef cmd;
    if (w25qxx_mode)
    {
        cmd.InstructionMode = QSPI_INSTRUCTION_4_LINES;
    }
    else
    {
        cmd.InstructionMode = QSPI_INSTRUCTION_1_LINE;
    }
    cmd.Instruction = W25X_EnableReset;
 
    cmd.AddressMode = QSPI_ADDRESS_NONE;
    cmd.AddressSize = QSPI_ADDRESS_24_BITS;
    cmd.Address = 0;
 
    cmd.DataMode = QSPI_DATA_NONE;
    cmd.NbData = 0;
 
    cmd.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
    cmd.AlternateBytesSize = 0;
    cmd.AlternateBytes = 0x00;
    cmd.DummyCycles = 0;
    cmd.DdrMode = QSPI_DDR_MODE_DISABLE;
    cmd.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
    cmd.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
 
    W25QXX_WaitBusy();
    if (HAL_QSPI_Command(&hqspi, &cmd, 100) == HAL_OK)
    {
        cmd.Instruction = W25X_ResetDevice;
        HAL_QSPI_Command(&hqspi, &cmd, 100);
    }
}

5.写QSPI FLASH

//写SPI FLASH
void W25QXX_Write(uint8_t *pbuf, uint32_t addr, uint16_t size)
{
  uint32_t sec_pos;
  uint32_t sec_off;
  uint32_t sec_rem;
  uint32_t i;
  uint8_t *W25QXX_BUF;
 
  W25QXX_BUF = w25qxx_buf;
  sec_pos = addr / 4096; //扇区地址
  sec_off = addr % 4096; //在扇区内的偏移
  sec_rem = 4096 - sec_off; //扇区剩余空间大小
  #ifdef DEBUG
  printf("addr:%08X size:%hu\r\n", addr, size); //测试用
  #endif
  if(size <= sec_rem)
  {
    sec_rem = size; //不大于4096个字节
  }
  while(1)
  {
    W25QXX_Read(W25QXX_BUF, sec_pos * 4096, 4096); //读出整个扇区的内容
    for (i = 0; i < sec_rem; i++) //校验数据
    {
      if (W25QXX_BUF[sec_off + i] != 0xFF)
        break; //需要擦除
    }
    if (i < sec_rem) //需要擦除
    {
      W25QXX_SectorErase(sec_pos); //擦除这个扇区
      for (i = 0; i < sec_rem; i++) //复制
      {
        W25QXX_BUF[sec_off + i] = pbuf[i];
      }
      W25QXX_Write_NoCheck(W25QXX_BUF, sec_pos * 4096, 4096); //写入整个扇区
    }
    else
    {
      W25QXX_Write_NoCheck(pbuf, addr, sec_rem); //写已经擦除了的,直接写入扇区剩余区间.
    }
    if (size == sec_rem)
    {
      break; //写入结束了
    }
    else //写入未结束
    {
      sec_pos++; //扇区地址增1
      sec_off = 0; //偏移位置为0
 
      pbuf += sec_rem; //指针偏移
      addr += sec_rem; //写地址偏移
      size-=sec_rem;        //字节数递减
      if (size > 4096)
      {
        sec_rem = 4096; //下一个扇区还是写不完
      }
      else
      {
        sec_rem = size; //下一个扇区可以写完了
      }
    }
  }
}

6.BSP_QSPI_Erase_Block函数

uint8_t BSP_QSPI_Erase_Block(uint32_t BlockAddress)

7.BSP_QSPI_Write函数

uint8_t BSP_QSPI_Write(uint8_t* pData, uint32_t WriteAddr, uint32_t Size)

五、 实验步骤

六、 实验现象