这是本文档旧的修订版!
银杏科技有限公司旗下技术文档发布平台 | |||
技术支持电话 | 0379-69926675-801 | ||
技术支持邮件 | Gingko@vip.163.com | ||
技术论坛 | http://www.eeschool.org | ||
版本 | 日期 | 作者 | 修改内容 |
---|---|---|---|
V1.0 | 2020-07-29 | gingko | 初次建立 |
1.在主界面选择File–>New Project 或者直接点击ACCEE TO MCU SELECTOR
2.出现芯片型号选择,搜索自己芯片的型号,双击型号,或者点击Start Project进入配置
在搜索栏的下面,提供的各 种查找方式,可以选择芯片内核,型号,等等,可以帮助你查找芯片。本实验选取的芯片型号为:STM32H750IBKx。
3.配置RCC,使用外部时钟源
4.时基源选择SysTick
5.将PA10,PB7,PB8设置为GPIO_Output
6.引脚模式配置
7.配置串口
在NVIC Settings一栏使能接收中断
引脚配置
8.配置ADC
9.时钟源设置,选择外部高速时钟源,配置为最大主频
10.工程文件的设置, 这里就是工程的各种配置 我们只用到有限几个,其他的默认即可 IDE我们使用的是 MDK V5.27
11.点击Code Generator,进行进一步配置
层数 | OSI模型 | 对应协议或硬件 |
7 | 应用层 | Modbus协议 |
6 | 表示层 | 空 |
5 | 会话层 | 空 |
4 | 传输层 | 空 |
3 | 网络层 | 空 |
2 | 数据链路层 | Modbus串行链路协议 |
1 | 物理层 | RS-485/RS-232 |
错误校验域是对报文内容执行“冗余校验”的计算结果。根据不同的传输模式(RTU或ASCII)使用两种不同的计算方法。
RTU模式每个字节(11位)的格式为:
子字节地址 | 功能代码 | 数据 | CRC |
1字节 | 1字节 | 0到252字节 | 2字节 |
* Modbus报文RTU帧
并行比较型/串并行比较型:并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的 * 并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路 规模比并行型小。
int main(void) { int i; unsigned short int temp[10] = {0}; HAL_Init(); SystemClock_Config(); i2c.initialize(); axp152.initialize(); axp152.set_dcdc1(3500);//[ARM & FPGA] axp152.set_dcdc2(1200);//[FPGA INT] axp152.set_dcdc3(3300);//[DCOUT3] axp152.set_dcdc4(3300);//[DCOUT4] axp152.set_aldo1(3300);//[BK3] axp152.set_aldo2(3300);//[ALDOOUT2] axp152.set_dldo1(3300);//[BK0] axp152.set_dldo2(3300);//[BK1] HAL_Delay(200); MX_GPIO_Init(); MX_USART1_UART_Init(); MX_ADC1_Init(); MX_ADC3_Init(); usart1.initialize(115200); while (1) { if(_500ms_flag == 1){ _500ms_flag = 0; my_adc.read(0); my_adc.read_mux(); temp[0] = my_adc.value[0] * 6 * 100; //5V监控 放大100倍 temp[1] = my_adc.value[5] / 2 * 1000.;//电流监控,取整 temp[2] = my_adc.value[7] * 2 * 100; //3.3V监控 放大100倍 temp[3] = my_adc.value[4] * 2 * 100; //2.5V监控 放大100倍 temp[4] = my_adc.value[6] * 100; //1.2V监控 放大100倍 temp[5] = my_adc.value[2] * 2 * 100; //BK3监控 放大100倍 temp[6] = my_adc.value[1] * 2 * 100; //BK4监控 放大100倍 temp[7] = my_adc.value[3] * 2 * 100; //BK5监控 放大100倍 temp[8] = my_adc.value[8] * 2 * 100; //BK7监控 放大100倍 temp[9] = lm75.read()*100; //温度监控 放大100倍 for(i = 0;i < 10;i ++){ hold_reg[2*i + 0] = temp[i] >> 8; hold_reg[2*i + 1] = temp[i] & 0xFF; } } if(_100ms_flag == 1){ _100ms_flag = 0; modbus.process(); } } }
static char process(void) { unsigned short temp; unsigned char receive_buffer_temp[140]; int counter_temp; //crc if(usart1.counter < 2)return 0; counter_temp = usart1.counter; usart1.counter = 0; memcpy(receive_buffer_temp,usart1.receive_buffer,counter_temp); memset(usart1.receive_buffer,0,counter_temp); temp = receive_buffer_temp[counter_temp - 1] << 8|receive_buffer_temp[counter_temp - 2]; if(crc(receive_buffer_temp,counter_temp - 2) == temp)mb_rsq_pdu(receive_buffer_temp,counter_temp); return 0; } static int mb_rsq_pdu(unsigned char *receive_buffer_temp,int counter_temp) { if(receive_buffer_temp[0] == mb_slave_address){ switch(receive_buffer_temp[1]){ case 1: function_1(receive_buffer_temp); break; case 2: function_2(receive_buffer_temp); break; case 3: function_3(receive_buffer_temp); break; case 4: function_4(receive_buffer_temp); break; case 5: function_5(receive_buffer_temp,counter_temp); break; case 6: function_6(receive_buffer_temp,counter_temp); break; default : mb_excep_rsq_pdu(receive_buffer_temp,1); break; } }else if(receive_buffer_temp[0] == 0){ broadcast(receive_buffer_temp); } return 0; } static int function_1(unsigned char *receive_buffer_temp) { int i; unsigned short cnt; unsigned short coil_num; unsigned short start_address; unsigned short crc_value; int temp; start_address = (receive_buffer_temp[2] << 8) | receive_buffer_temp[3]; coil_num = receive_buffer_temp[4] << 8| receive_buffer_temp[5]; if((start_address + coil_num) > 255){ mb_excep_rsq_pdu(receive_buffer_temp,2); return 1; } receive_buffer_temp[2] = ((coil_num % 8 )? (coil_num / 8 + 1) : (coil_num / 8)); cnt = receive_buffer_temp[2] + 5; if(coil_num % 8){ if(coil_num < 8){ for(i = 0;i < coil_num;i ++)temp |= 1 << i; receive_buffer_temp[3] = ((coil[start_address / 8]) >> (start_address % 8) | (coil[start_address / 8 + 1]) << (8 - (start_address % 8))) & temp; }else { for(i = 0;i < receive_buffer_temp[2] - 1;i++)receive_buffer_temp[3 + i] = (coil[i + start_address / 8]) >> (start_address % 8) | (coil[i + start_address / 8 + 1]) << (8 - (start_address % 8)); receive_buffer_temp[3 + i] = (coil[i + start_address / 8] << ((8 - (coil_num % 8 - start_address % 8) % 8)) & 0xff) >> (8 - (coil_num % 8)); } }else { for(i = 0;i < receive_buffer_temp[2];i++)receive_buffer_temp[3 + i] = (coil[i + start_address / 8]) >> (start_address % 8) | (coil[i + start_address / 8 + 1]) << (8 - (start_address % 8)); } crc_value = crc(receive_buffer_temp,cnt - 2); receive_buffer_temp[cnt - 2] = crc_value & 0x00ff; receive_buffer_temp[cnt - 1] = (crc_value >> 8) & 0xff; for(i = 0;i < cnt;i++)usart1.send_byte(receive_buffer_temp[i]); return 0; } static int function_3(unsigned char *receive_buffer_temp) { int i; int cnt; unsigned short int start_address; unsigned short int crc_value; start_address = (receive_buffer_temp[2] << 8) | receive_buffer_temp[3]; receive_buffer_temp[2] = receive_buffer_temp[5] * 2; if(receive_buffer_temp[2] > 100){ //判断最大传输量,防止越界 mb_excep_rsq_pdu(receive_buffer_temp,2); return 1; } if((start_address * 2 + receive_buffer_temp[2]) > 512){ mb_excep_rsq_pdu(receive_buffer_temp,2); return 1; } cnt = receive_buffer_temp[2] + 5; for(i = 0;i < receive_buffer_temp[2];i++)receive_buffer_temp[i + 3] = hold_reg[start_address * 2 + i]; crc_value = crc(receive_buffer_temp,cnt - 2); receive_buffer_temp[cnt - 2] = crc_value & 0x00ff; receive_buffer_temp[cnt - 1] = (crc_value >> 8) & 0xff; for(i = 0;i < cnt;i++)usart1.send_byte(receive_buffer_temp[i]); return 0; } static int function_5(unsigned char *receive_buffer_temp,int counter_temp) { int i; unsigned short start_address; start_address = (receive_buffer_temp[2] << 8) | receive_buffer_temp[3]; if(start_address > 255){ mb_excep_rsq_pdu(receive_buffer_temp,2); return 1; } if((receive_buffer_temp[4] == 0xff) && (receive_buffer_temp[5] == 0x00)){ coil[(start_address / 8)] |= 1 << start_address % 8; }else if((receive_buffer_temp[4] == 0x00) && (receive_buffer_temp[5] == 0x00)){ coil[(start_address / 8)] &= ~(1 << start_address % 8); }else { mb_excep_rsq_pdu(receive_buffer_temp,3); } for(i = 0;i < counter_temp;i++){ usart1.send_byte(receive_buffer_temp[i]); } return 0;
1、选择相应的位(32 位或 64 位)双击,NEXT→NEXT→Install→NEXT→Finished。
2、打开 Modbus Poll,点击 Connection connect,输入 SN.txt 中的序列号。
3、按下图进行设置,点击 OK 即可。